Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diversity (Basel) ; 14(6): 456, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35747489

RESUMO

Elasmobranchii are relatively well-studied. However, numerous phylogenetic uncertainties about their relationships remain. Here, we revisit the phylogenetic evidence based on a detailed morphological re-evaluation of all the major extant batomorph clades (skates and rays), including several holomorphic fossil taxa from the Palaeozoic, Mesozoic and Cenozoic, and an extensive outgroup sampling, which includes sharks, chimaeras and several other fossil chondrichthyans. The parsimony and maximum-likelihood analyses found more resolved but contrasting topologies, with the Bayesian inference tree neither supporting nor disfavouring any of them. Overall, the analyses result in similar clade compositions and topologies, with the Jurassic batomorphs forming the sister clade to all the other batomorphs, whilst all the Cretaceous batomorphs are nested within the remaining main clades. The disparate arrangements recovered under the different criteria suggest that a detailed study of Jurassic taxa is of utmost importance to present a more consistent topology in the deeper nodes, as issues continue to be present when analysing those clades previously recognized only by molecular analyses (e.g., Rhinopristiformes and Torpediniformes). The consistent placement of fossil taxa within specific groups by the different phylogenetic criteria is promising and indicates that the inclusion of more fossil taxa in the present matrix will likely not cause loss of resolution, therefore suggesting that a strong phylogenetic signal can be recovered from fossil taxa.

2.
PeerJ ; 9: e11362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026354

RESUMO

A partial skeleton of a hybodontiform shark-like chondrichthyan from the Upper Jurassic Kimmeridge Clay Formation of Dorset, England, is described and designated as a new genus and species, Durnonovariaodus maiseyi gen. et sp. nov. The holotype and only known specimen, which is represented by disarticulated splanchnocranial elements with associated teeth, a single dorsal fin spine, the pelvic girdle, as well as unidentifiable cartilage fragments, plus countless dermal denticles, exhibits a puzzling combination of dental and skeletal features, providing important new insights into the morphological and ecological diversity of hybodontiforms. Durnonovariaodus gen. nov. displays a unique set of dental characters, showing close morphological resemblance to Secarodus from the Middle Jurassic of England, which was erected for distinctive, strongly labio-lingually compressed multicuspid cutting teeth originally described as Hybodus polyprion. Skeletally, Durnonovariaodus gen. nov. resembles Hybodus and Egertonodus in having a palatoquadrate with a palatobasal process and an ethmoidal articular surface, combined with the possession of dorsal fin spines ornamented with costae. Therefore, and given the absence of any conclusive phylogenetic framework, Durnonovariaodus maiseyi gen. et sp. nov. is here tentatively referred to Hybodontidae until more complete material becomes available in order to enable a more reliable suprageneric identification. The holotype of Durnonovariaodus maiseyi gen. et sp. nov. contains two separate pelvic half-girdles, a feature previously considered as evolutionarily primitive among hybodontiforms. However, unfused pelvic half-girdles also occur in the supposedly closely related species Hybodus hauffianus and may in fact have been more widely distributed among hybodontiforms than previously thought, thus rendering the phylogenetic utility of separated pelvic half-girdles for inferring hybodontiform interrelationships difficult and unresolved.

3.
Sci Rep ; 9(1): 9652, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273249

RESUMO

The cartilaginous fishes (Chondrichthyes) have a rich fossil record which consists mostly of isolated teeth and, therefore, phylogenetic relationships of extinct taxa are mainly resolved based on dental characters. One character, the tooth histology, has been examined since the 19th century, but its implications on the phylogeny of Chondrichthyes is still in debate. We used high resolution micro-CT images and tooth sections of 11 recent and seven extinct lamniform sharks to examine the tooth mineralization processes in this group. Our data showed similarities between lamniform sharks and other taxa (a dentinal core of osteodentine instead of a hollow pulp cavity), but also one feature that has not been known from any other elasmobranch fish: the absence of orthodentine. Our results suggest that this character resembles a synapomorphic condition for lamniform sharks, with the basking shark, Cetorhinus maximus, representing the only exception and reverted to the plesiomorphic tooth histotype. Additionally, †Palaeocarcharias stromeri, whose affiliation still is debated, shares the same tooth histology only known from lamniform sharks. This suggests that †Palaeocarcharias stromeri is member of the order Lamniformes, contradicting recent interpretations and thus, dating the origin of this group back at least into the Middle Jurassic.


Assuntos
Evolução Biológica , Tubarões/anatomia & histologia , Tubarões/fisiologia , Calcificação de Dente/fisiologia , Dente/anatomia & histologia , Microtomografia por Raio-X/métodos , Animais , Filogenia , Dente/diagnóstico por imagem
4.
Zootaxa ; 4461(1): 118-126, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30314100

RESUMO

Elasmobranchii is a clade of chondrichthyans (cartilaginous fishes) that comprises sharks, skates and rays represented today by approximately 1,200 species. Chondrichthyans have a long evolutionary history dating back to the Late Ordovician (ca. 450 million years ago [Mya]) based on isolated dermal denticles (Janvier 1996). Other remains such as articulated skeletons and teeth are known from the Lower Devonian (ca. 410 Mya: Mader 1986; Miller et al. 2003). The fossil record of modern elasmobranchs (Neoselachii) can be traced back to the Early Permian (ca. 290 Mya) and is represented by isolated teeth (Ivanov 2005), with fossils of crown group sharks and rays appearing in Lower Jurassic (ca. 200 Mya) rocks (e.g., Cappetta 2012). Since their appearance in the geological record, elasmobranchs are mainly represented by isolated teeth, whereas articulated skeletons are very rare and restricted to a small number of fossil localities (e.g., Cappetta 2012). The scarcity of skeletal remains in their fossil record is due to their poorly mineralized cartilaginous skeleton that requires special taphonomical conditions to be preserved. Elasmobranch teeth, in contrast, are composed of highly mineralized tissues (hydroxyapatite) that have a strong preservation potential (Shimada 2006). In addition, elasmobranchs replace their teeth continuously over the course of their life span (polyphyodonty) and therefore shed thousands of teeth in their lifetime (Reif et al. 1978; Schnetz et al. 2016) leading to large numbers of potential fossils. These morphologically highly diverse isolated teeth constitute much of the rich fossil record of elasmobranchs, and largely form the basis of our understanding of elasmobranch diversity and evolution through geological time.


Assuntos
Peixes , Filogenia , Animais , Evolução Biológica , Fósseis , Dente
5.
PLoS One ; 13(8): e0200951, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30089138

RESUMO

Shark jaws exhibit teeth that are arranged into distinct series and files and display great diversities in shapes and structures, which not only is related to their function (grasping, cutting, crushing) during feeding, but also bear a strong phylogenetic signal. So far, most research on the relationship between shark teeth and feeding ecology and systematics focused on the external tooth morphology only. Although the tooth histology of sharks has been examined since the early 19th century, its functional and systematic implications are still ambiguous. Shark teeth normally consist of either a porous, cellular dentine, osteodentine (in lamniform sharks and some batoids) or a dense layer of orthodentine (known from different sharks). Sharks of the order Carcharhiniformes, comprising ca. 60% of all extant shark species, are known to have orthodont teeth, with a single exception-the snaggletooth shark, Hemipristis elongata. High resolution micro-CT images of jaws and teeth from selected carcharhiniform sharks (including extant and fossil snaggletooth sharks) and tooth sections of teeth of Hemipristis, other carcharhiniform and lamniform sharks, have revealed that (1) Hemipristis is indeed the only carcharhiniform shark filling its pulp cavity with osteodentine in addition to orthodentine, (2) the tooth histology of Hemipristis elongata differs from the osteodont histotype, which evolved in lamniform sharks and conversely represents a modified orthodonty, and (3) this modified orthodonty was already present in extinct Hemipristis species but the mineralization sequence has changed over time. Our results clearly show the presence of a third tooth histotype-the pseudoosteodont histotype, which is present in Hemipristis. The unique tooth histology of lamniform sharks might provide a phylogenetic signal for this group, but more research is necessary to understand the phylogenetic importance of tooth histology in sharks in general.


Assuntos
Tubarões/anatomia & histologia , Tubarões/fisiologia , Dente/anatomia & histologia , Adaptação Fisiológica , Animais , Evolução Biológica , Dentina/citologia , Fósseis , Técnicas Histológicas , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/citologia , Filogenia , Tomografia Computadorizada por Raios X , Dente/citologia , Dente/diagnóstico por imagem , Calcificação de Dente/fisiologia , Microtomografia por Raio-X
6.
R Soc Open Sci ; 4(9): 170674, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28989770

RESUMO

The shapes of vertebrate teeth are often used as hallmarks of diet. Here, however, we demonstrate evidence of frequent piscivory by cartilaginous fishes with pebble-like teeth that are typically associated with durophagy, the eating of hard-shelled prey. High-resolution micro-computed tomography observation of a jaw specimen from one batoid species and visual investigation of those of two additional species reveal large numbers of embedded stingray spines, arguing that stingray predation of a scale rivalling that of the largest carnivorous sharks may not be uncommon for large, predatory batoids with rounded, non-cutting dentition. Our observations demonstrate that tooth morphology is not always a reliable indicator of diet and that stingray spines are not as potent a deterrent to predation as normally believed. In addition, we show that several spines in close contact with the jaw skeleton of a wedgefish (Rhynchobatus) have become encased in a disorganized mineralized tissue with a distinctive ultrastructure, the first natural and unequivocal evidence of a callus-building response in the tessellated cartilage unique to elasmobranch skeletons. Our findings reveal sampling and analysis biases in vertebrate ecology, especially with regard to the role of large, predatory species, while also illustrating that large body size may provide an escape from anatomical constraints on diet (e.g. gape size, specialist dentition). Our observations inform our concepts of skeletal biology and evolution in showing that tessellated cartilage-an ancient alternative to bone-is incapable of foreign tissue resorption or of restoring damaged skeletal tissue to its original state, and attest to the value of museum and skeletal specimens as records of important aspects of animal life history.

7.
PLoS One ; 12(6): e0178294, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28591222

RESUMO

Lamniform sharks are apex marine predators undergoing dramatic local and regional decline worldwide, with consequences for marine ecosystems that are difficult to predict. Through their long history, lamniform sharks have faced widespread extinction, and understanding those 'natural experiments' may help constrain predictions, placing the current crisis in evolutionary context. Here we show, using novel morphometric analyses of fossil shark teeth, that the end-Cretaceous extinction of many sharks had major ecological consequences. Post-extinction ecosystems supported lower diversity and disparity of lamniforms, and were dominated by significantly smaller sharks with slimmer, smoother and less robust teeth. Tooth shape is intimately associated with ecology, feeding and prey type, and by integrating data from extant sharks we show that latest Cretaceous sharks occupied similar niches to modern lamniforms, implying similar ecosystem structure and function. By comparison, species in the depauperate post-extinction community occupied niches most similar to those of juvenile sand tigers (Carcharias taurus). Our data show that quantitative tooth morphometrics can distinguish lamniform sharks due to dietary differences, providing critical insights into ecological consequences of past extinction episodes.


Assuntos
Evolução Biológica , Ecossistema , Tubarões/anatomia & histologia , Animais , Fatores de Tempo , Dente/anatomia & histologia
8.
Dev Biol ; 415(2): 347-370, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26845577

RESUMO

The evolution of oral teeth is considered a major contributor to the overall success of jawed vertebrates. This is especially apparent in cartilaginous fishes including sharks and rays, which develop elaborate arrays of highly specialized teeth, organized in rows and retain the capacity for life-long regeneration. Perpetual regeneration of oral teeth has been either lost or highly reduced in many other lineages including important developmental model species, so cartilaginous fishes are uniquely suited for deep comparative analyses of tooth development and regeneration. Additionally, sharks and rays can offer crucial insights into the characters of the dentition in the ancestor of all jawed vertebrates. Despite this, tooth development and regeneration in chondrichthyans is poorly understood and remains virtually uncharacterized from a developmental genetic standpoint. Using the emerging chondrichthyan model, the catshark (Scyliorhinus spp.), we characterized the expression of genes homologous to those known to be expressed during stages of early dental competence, tooth initiation, morphogenesis, and regeneration in bony vertebrates. We have found that expression patterns of several genes from Hh, Wnt/ß-catenin, Bmp and Fgf signalling pathways indicate deep conservation over ~450 million years of tooth development and regeneration. We describe how these genes participate in the initial emergence of the shark dentition and how they are redeployed during regeneration of successive tooth generations. We suggest that at the dawn of the vertebrate lineage, teeth (i) were most likely continuously regenerative structures, and (ii) utilised a core set of genes from members of key developmental signalling pathways that were instrumental in creating a dental legacy redeployed throughout vertebrate evolution. These data lay the foundation for further experimental investigations utilizing the unique regenerative capacity of chondrichthyan models to answer evolutionary, developmental, and regenerative biological questions that are impossible to explore in classical models.


Assuntos
Dentição , Desenvolvimento Maxilofacial/genética , Odontogênese/genética , Regeneração/genética , Tubarões/genética , Dente/fisiologia , Animais , Evolução Biológica , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Interação Gene-Ambiente , Proteínas de Homeodomínio/genética , Arcada Osseodentária/embriologia , Filogenia , Tubarões/anatomia & histologia , Tubarões/embriologia , Tubarões/fisiologia , Dente/embriologia , Dente/crescimento & desenvolvimento , Fatores de Transcrição/genética , Vertebrados/anatomia & histologia , Vertebrados/classificação
9.
PLoS One ; 10(4): e0122553, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874547

RESUMO

Shark and ray (elasmobranch) dentitions are well known for their multiple generations of teeth, with isolated teeth being common in the fossil record. However, how the diverse dentitions characteristic of elasmobranchs form is still poorly understood. Data on the development and maintenance of the dental patterning in this major vertebrate group will allow comparisons to other morphologically diverse taxa, including the bony fishes, in order to identify shared pattern characters for the vertebrate dentition as a whole. Data is especially lacking from the Batoidea (skates and rays), hence our objective is to compile data on embryonic and adult batoid tooth development contributing to ordering of the dentition, from cleared and stained specimens and micro-CT scans, with 3D rendered models. We selected species (adult and embryonic) spanning phylogenetically significant batoid clades, such that our observations may raise questions about relationships within the batoids, particularly with respect to current molecular-based analyses. We include developmental data from embryos of recent model organisms Leucoraja erinacea and Raja clavata to evaluate the earliest establishment of the dentition. Characters of the batoid dentition investigated include alternate addition of teeth as offset successional tooth rows (versus single separate files), presence of a symphyseal initiator region (symphyseal tooth present, or absent, but with two parasymphyseal teeth) and a restriction to tooth addition along each jaw reducing the number of tooth families, relative to addition of successor teeth within each family. Our ultimate aim is to understand the shared characters of the batoids, and whether or not these dental characters are shared more broadly within elasmobranchs, by comparing these to dentitions in shark outgroups. These developmental morphological analyses will provide a solid basis to better understand dental evolution in these important vertebrate groups as well as the general plesiomorphic vertebrate dental condition.


Assuntos
Evolução Biológica , Dentição , Rajidae/anatomia & histologia , Dente/anatomia & histologia , Animais , Fósseis , Modelos Anatômicos , Filogenia , Tubarões/anatomia & histologia , Tubarões/embriologia , Tubarões/crescimento & desenvolvimento , Rajidae/embriologia , Rajidae/crescimento & desenvolvimento , Especificidade da Espécie , Dente/embriologia , Dente/crescimento & desenvolvimento , Coroa do Dente/anatomia & histologia , Coroa do Dente/embriologia , Coroa do Dente/crescimento & desenvolvimento , Raiz Dentária/anatomia & histologia , Raiz Dentária/embriologia , Raiz Dentária/crescimento & desenvolvimento , Vertebrados/anatomia & histologia , Vertebrados/classificação , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...